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The absorption spectrum of [(NH3)5Ru-(4,4′-bipyridine)]2+ in the visible has been studied by ab initio methods,
taking into account solvent effects by means of the polarizable continuum model and performing extensive
CI calculations. The dependence of the ground and lowest excited states has been investigated as a function
of the torsional angle between the two pyridine rings of bipyridine in vacuo, as well as in nitromethane,
water, and dimethylsulfoxide. Including the torsion, the position and profile of the metal-to-ligand charge
transfer band has also been computed. The results obtained in water are in good agreement with the only
experimental result available, while they are predictive in the two other solvents.

Introduction

In recent years, organometallic compounds made by transition
metals with N-aromatic ligands have drawn the interest of both
experimentalists and theoreticians from various fields. In fact,
such compounds are the basic units of more extended systems
that are investigated for the study of intramolecular electron
and energy transfer and their related properties.1

Ru compounds, with bidentate ligands such as pyrazine (pyz)
or 4,4′-bipyridine (bpy) and many others,2 are among the
favorites. In fact, they can have very low and intense electronic
excitations and thus be highly polarizable, which translates into
significant conductive3 and nonlinear optical properties,4 espe-
cially when the metal atoms are in different oxidation states
(mixed-valent compounds). These materials are therefore of
interest for possible applications in molecular electronic devices,
and from this perspective, it is worthwhile to reach a good
understanding of the properties of their building blocks, which
may serve well when designing materials with given properties.

For extended systems with several metal-ligand units, the
only theoretical possibility is to build simplified models that,
including the relevant physics, allow the understanding of
specific properties.4-8 However, the single units can be studied
by performing extensive ab initio calculations9 that, besides a
solid theoretical knowledge of the units themselves, can also
furnish useful insights for building simplified models for the
corresponding extended systems.

One of the possible candidates for such a study is [(NH3)5-
Ru-(4,4′-byp)]2+ (Figure 1), which is the subject of the present
work. This is an interesting compound, being part of the well-
known partially localized bpy-bridged Ru dimer, which has been
recently modeled with a four-orbital two-band Hubbard Hamil-
tonian.6 The model predicts that the weak band at∼1 eV
observed for the mixed-valent species (one Ru(II) and one
Ru(III)) is a metal-to-ligand charge transfer (MLCT), in contrast
with the commonly accepted assignment assessing that it is an
intervalence, or metal-to-metal charge transfer.10 Although
Raman experiments11 are clearly in favor of an MLCT assign-

ment, showing that resonance enhancement occurs even for the
Ru(II)-Ru(II) system and that the vibrational ladder of ligand
modes appears, there is still no definitive answer. From this
perspective, the results of ab initio calculations are of funda-
mental importance. However, before attacking the large Ru
dimer, we first want to study carefully the moiety [(NH3)5Ru-
(4,4′-byp)]2+.

In a previous paper9 we have studied the smaller [(NH3)5-
Ru-pyz]2+ ion by performing extensive CI calculations and
including solvent effects by using the well-known polarizable
continuum model (PCM) by Tomasi and coworkers.12 We have
found that only a suitable inclusion of solvent effects allows a
good agreement between theoretical predictions and experi-
ments, at least as far as the near-IR-visible optical properties
are concerned. In particular, we have been able to contribute to
the theoretical understanding of the energy shift, observed
experimentally changing the solvent, of the MLCT transition
(solvatochromic effect), a problem that has been widely
investigated in the literature.13-15

Here, we want to apply the same method to the 4,4′-bpy
compound. This ion has not been studied extensively in various
solvents as its pyz companion,16 and only data in water are
available17 (data are instead available for the N-Me analogue18).
From this perspective our computations thus also have a
predictive character.

The compound 4,4′-bpy has two rings connected by a C-C
single bond that can rotate relative to each other and thus change
the interaction of theπ orbitals of the two rings, i.e., their
delocalization. The torsion can then be expected to play a
significant role in determining the observed solvatochromic
effect on the low-energy absorption, both in the ion studied here
and in the most studied bridged Ru dimer.16,19 For this reason,
in the present paper we have carried out an accurate study of
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the MLCT transition in various solvents, as well as of the
dependence of the involved states on the ring-ring torsional
angle.

Method and Computational Details

The study reported in the present paper has been performed
by extensive CI calculations in which the solvent is taken into
account by the PCM approach.12 This method, as well as all
others derived from the Onsager reaction field model,20 sees
the solute molecule surrounded by a cavity, which is the
interface with the solvent represented as a polarizable continuum
medium with dielectric constantε. The solvent, polarized by
the solute molecule, gives rise to a charge distribution on the
cavity surface that generates a reaction field potentialW(Fa,ε,Ω)
that must be added to the solute electrostatic Hamiltonian in a
vacuum,H0. For a fixed nuclear configuration of the solute,
one then has to solve the following eigenvalue problem:

whereFa is the electronic+ nuclear charge density of theath
state (ψa) of the solute andΩ represents the general dependence
on the shape and size of the cavity. OnceFa is given, the surface
density charge is found by imposing definite boundary condi-
tions at the cavity surface,21 derived by classical electrostatics.

This approach in principle should be modified when dealing
with electronic excitations. In fact, under a sudden excitation
from the ground to theath state, the solvent does not have the
time to relax to reach equilibrium with the new electronic density
Fa. The corresponding nonequilibrium problem can be solved
in a semiclassical picture, partitioning the solvent susceptibility
into two terms,øslow and øfast,22-25 respectively related to the
nuclear and electronic relaxation times. However, since we have
found previously9 that this heavy procedure affects negligibly
the transition energies, we have solved the simplified version
of eq 1:

taking into account only the reaction field in equilibrium with
the ground-stateψ0.

In the PCM calculations reported here it is very important
that the cavity be properly chosen. In fact, owing to the+2
charge and to formation of ammonia-solvent hydrogen bonds
for the compound under study, solvent effects are expected to
be very strong. In principle, the hydrogen bond cannot be
properly treated by the PCM, which is based on classical
arguments. However, if one is interested in a good representation
of the electronic density far enough from the solute-solvent
interaction surface, this problem can be overcome with a proper
choice of the shape and dimension of the cavity. This has been
done by us9 for the Ru(NH3)5 fragment, which can form
hydrogen bonds with the solvent. Since the ligand bpy does
not alter appreciably the NH3-solvent interaction, the cavities
optimized in ref 9 can be utilized here without changes. While
the details of the method can be found in ref 9, we only briefly
mention here the basic outlines as a reminder.

We want to build an optimal cavity for the Ru(NH3)5 fragment
by means of one sphere centered on each ammonia nitrogen.
Taking as a prototype species for [Ru(NH3)5L]+2 the simplified
ion [RuHe5NH3]2+, we have performed two types of calculation
for each of the three solvents considered: nitromethane (NM),
water, and dimethylsulfoxide (DMSO). For a supermolecule in
which three real solvent molecules are appropriately placed
along the N-H bond directions, we have computed the SCF-

HF electron density (FS) in the Ru-N-H-solvent region. The
same quantity has been computed at the SCF level with the
PCM (FPCM) at various values of the radius of the sphere on
the ammonia, and the optimal radius has then been taken as
that givingFPCM ≈ Fs in the Ru-N region. The results obtained
are summarized in Table 1 (see also ref 9), and theRPCM values
reported are those that have been utilized for the five ammonia
molecules of [(NH3)5Ru-(4,4′-byp)]2+ in the computation with
the solvent. The extension of the results obtained for the
prototype ion [He5RuNH3]2+ to the complex under study is
based on the assumption that the ligand field on the metal is
the sum of independent contributions coming from each NH3.
This is very reasonable because of the nearly electrostatic nature
of the Ru-NH3 bond. Again, we want to stress that the criterion
proposed for obtaining the best cavity may be successfully
employed, since the region of space relevant for MLCT
transitions is far enough from the H-bonded solute-solvent
interface.

As far as the cavity surrounding the bpy ligand molecule is
concerned, we have made some changes in comparison with
our previous study, where we took a single sphere for the whole
pyz ring. To have a more appropriate shape of the cavity
surrounding 4,4′-bpy rings, we have here taken one sphere for
each C-H of the ring (R ) 1.78 Å) centered in the middle of
the C-H bond plus a sphere on the center of the ring (R )
2.90 Å). The cavity on the bpy is the same for each solvent.

Since we are interested in the study of the ion as the torsional
angleθ varies, for each value ofθ considered we have optimized
in vacuum all the remaining ligand degrees of freedom (the
fragment Ru(NH3)5- has been kept fixed at the same geometry
as in the pyz compound), performing density functional calcula-
tions based on the three-parameter Becke functional (B3LYP).26

The optimized geometries in vacuum have then been utilized
also for the calculations in solution. In all calculations the 6-31G
basis and the 36-electron ECP of Hay and Wadt27 with the
corresponding DZ basis set for Ru have been used.

The next step we have carried out is a PCM-SCF-HF
calculation to obtain an approximateψ0 (andF0). The integrals
have then been transformed from an atomic to a molecular basis,
including the one-electron reaction field matrix in equilibrium
with the SCF ground-state density. In this step we have frozen
28 orbitals and considered the subspace generated by the
remaining 41 occupied MO’s plus the lowest 41 virtual MO’s.
These 82 orbitals have been considered in the multireference
CI calculations in which the configuration space is gradually
enlarged step by step according to the so-called aimed selec-
tion.28 Each step involves the following actions.

(i) Once given a configurational spaceS0, the lowest
eigensolutions (four in the present case) are computed by
standard methods. These are called zero-order states.

(ii) The first-order perturbative contribution to the zero-order
states, which arises from single and double excitations from all
detors belonging toS0, is computed. The new space obtained
by S0 plus its single and double excitations is called perturbative
spaceSp.

(H0 + W(Fa,ε,Ω))|ψa〉 ) Va|ψa〉 (1)

(H0 + W(F0,ε,Ω))|ψa〉 ) Va|ψa〉 (2)

TABLE 1: Optimized Radius of the Sphere on NH3 in PCM
Calculations9

solvent DNa εb RPCM
c (Å)

NM 2.7 38.2 1.82
H2O 18.1 78.4 1.72
DMSO 29.8 46.7 1.67

a Donor number.b Dielectric constant at 25°C. c Optimized radius
of the spheres surrounding ammonia in PCM calculations.
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(iii) A subspaceSη of Sp is selected so that the norm of the
first-order correction to the zero-order states is equal to a given
valueη. Note thatη is the same for all the desired states (four
here) and for all the geometries considered. This is the key point
of the method.

(iv) The configurational spaceSη is added toS0, giving rise
to the new variational space to be used in the next step. If the
dimension of the space (S0 + Sη) is large enough, the lowest
eigensolutions are computed and the sequence stopped. In the
other case the value ofη is decreased and the procedure restarts
from step i.

This method of selection of the configurational space
guarantees that the final eigensolutions all have the same quality
controlled byη. The dimension of the final space depends on
the geometry (θ in the present case), which is of relevance when
one wants to get balanced energies both for different geometries
(e.g., for various values ofθ) and for different states. This is
therefore a valid alternative approach to the more standard MR-
CI in which the configurational space is fixed.

The variational calculations (CI-V) that we report here ranges
from 20 000 and 40 000 detors depending onθ and are obtained
by a final value ofη ) 0.12. For example, in the case of water
as solvent and forθ ) 0° this space has dimension 26 500 and
includes 674, 11 608, 13 844, 357, and 16 first, second, third,
fourth, and fifth excited detors, respectively.

A second type of calculation, the variational-perturbative (CI-
VP), is based on the second-order diagrammatic perturbation;28

the (S0 + Sη) space obtained byη ) 0.17 (∼7000 detors) is
considered for obtaining zero-order states. The second-order
energy corrections by the contribution of single and double
excitation of all detors belonging to the (S0 + Sη) space are
then included in the final energies.

It is worthwhile to stress that our CI-VP energies include
the contributions of∼1010 detors and make the results stable
with respect to the choice of the SCF orbitals. For instance,
starting from an SCF in which suitable Nesbet occupation
numbers are used to perform a pseudo-state-averaged calcula-
tion, the excitation energies change by no more than 0.03 eV.

To give further elements for an estimate of the accuracy of
our calculations (see also Tables 3 and 4 of ref 9), we report in
Table 2 the results obtained in the various steps for the MLCT
(dxz f π*) excitation energy in water atθ ) 0°. It is evident
that a good stability of the excitation energy versus the CI space
dimension is reached in the CI-V calculations and that the
perturbative correction is small enough (∼0.25 eV) to let us be
confident to have a final accuracy of our results of less than
0.1 eV.

The torsional degree of freedom wave functions are computed
in the Born-Oppenheimer approximation by projecting the
corresponding eigenvalue problem (in au)

on a large basis of trigonometric cos(kθ) and sin(kθ) functions.
Va is the energy of the electronic stateψa (eq 2). Considering
free rotation between the group of five NH3’s and the pyr ring
close to Ru, the moment of inertiaIR can be taken as the reduced
moment of inertia of the two rings with respect to the Ru-N-
C-C-N axis (IR ≈ 43 amu Å2). The quantum photoabsorption
cross section (σQ) is then computed taking into account the
statistical population, at room temperature, of the torsional levels
of the electronic ground state by

whereEj0 and Em1 are the energies of the rotational states of
the electronic groundψ0 and excited stateψ1, respectively,c
the speed of light, andδ the Dirac delta function.ZQ is the
quantum partition function of the internal torsion coordinate (ZQ

) ∑je-Ej0/(kBT)). The oscillator strengthf(m1rj0) is, in the dipole-
length approximation,

whereT01 is the electronic transition moment between the two
electronic states in the dipole approximation.

The discrete function of eq 4 only takes into account the
vibronic contribution due to the torsion. The effect of the other
nuclear degrees of freedom, which is also of importance, is not
considered here, since it would require an extensive study of
the ground and excited potential energy surfaces. To mimic these
effects and obtain a line shape profile, we have convoluted the
cross section of eq 4 with a Gaussian function of fwhm) 0.1
eV.

In light of the small variation of the energy withθ, the
classical statistical cross section

may provide a simplified and accurate enough expression for
the photoabsorption intensity.Zc is here the classical partition
function of the electronic ground state. SinceT01 does not change
much withθ, the above integral may be easily and accurately
computed by numerical quadrature. However, the results
obtained by eq 6 are about the same as those obtained by the
quantum expression 4.

Results and Discussions

In the complex under study, as for the pyz compound, Ru(II)
has a low-spin 4d6 configuration. The bpy breaks the octahedral
symmetry at the Ru atom and removes the degeneracy of the
t2g orbitals of Ru. Taking the pyridine (pyr) ring of 4,4′-bpy
bound to Ru in theyzplane, with the Ru-Npyr (Npyr is the N
of pyr) on thez axis, the highest occupied metal orbitals in-
volved in the low-energy excitations are 4dxz, 4dx2-y2, and 4dyz.
For the ligand, relevant orbitals are the twoπ*’s resulting from
the pyr π*’s that have mainly N character, one on each pyr
ring of bpy. This can be seen in the maps (in water), reported
in Figures 2 and 3, of the HOMO and the two lowestπ*’s.
When the two pyr rings are perpendicular (θ ) 90°; Figure 2),
the HOMO is practically the Ru dxz, with a small charge on the
first ligand ring, the LUMO is essentially theπ* on the pyr

TABLE 2: MLCT (d xz f π*) Excitation Energy (EMLCT ) in
H2O at θ ) 0° a

calculation type EMLCT (eV)

∆ε - J + 2K 4
CI-V (η ) 0.34,D ) 87) 3.2
CI-V (η ) 0.32,D ) 174) 2.69
CI-V (η ) 0.17,D ) 4860) 2.64
CI-V (η ) 0.12,D ) 26500) 2.66
CI-VP (from η ) 0.17) 2.40

a ∆ε is the difference of orbital energies, andD is the dimension of
the configurational space.

[- 1
2IR

d2

dθ2
+ Va(θ)]øja(θ) ) Ejaøja(θ) (3)

σQ(ω) )
2π2

cZQ
∑
j,m

e-Ej0/(kBT) f(m1rj0) δ(ω-Em1+Ej0) (4)

f(m1rj0) ) 2
3
(Em1 - Ej0)|∫dθ øj0

/ (θ) T01(θ) øm1(θ)|2 (5)

σc(ω) ) 4π2

3cZc
∫dθ e-V0(θ)/(kBT)|T01(θ)|2[V1(θ) -

V0(θ)] δ[ω-V1(θ) + V0(θ)] (6)
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ring far from Ru, and the next orbital is that close to Ru, slightly
mixed with the Ru dxz. The Ru-pyr interaction makes theπ*
on the ring nearest the metal slightly higher in energy than that
on the farthest. When the two rings are on the same plane (θ )
0°; Figure 3), the two pyrπ* are mixed. While the HOMO is
practically unchanged, the LUMO is the bonding (symmetric)
combination of theπ*’s on the two rings, and after two further
π* orbitals having a nodal plane coincident with thexz
symmetry plane, there is the antibonding (antisymmetric)
combination of the two.

The geometry relaxation of the aromatic ligand, performed
for several values of the torsion, shows an overall decrease of
the ground-state energy in the range 2( 0.25 kcal/mol. Thus,
both the position of the minimum and the barrier heights (0°
and 90°) are only slightly modified by the geometry relaxation.

The DFT energy curve is reported in Figure 4, where we
also show the curves obtained by SCF, CI-V, and CI-VP
calculations in vacuo. All curves have been shifted with respect
to the energy atθ ) 0°. SCF computations predict a mini-
mum at∼40° and about the same barrier height for 0 and 90°.
By comparison of these results with the SCF data reported in
the literature for the 4,4′-bpy alone,29,30 it appears that the
position of the minimum is not significantly changed in the Ru
compound (48-50° in the ligand alone), while relevant differ-
ences in the torsional barriers height are evident. For the isolated
ligand a∼4 kcal/mol barrier at 0° and a∼1 kcal/mol barrier at
90° where found,29 while in the Ru compound the barrier is
roughly the same both at 0° and at 90°. This can be reasonably
explained invoking Ru-pyr back-bonding that stabilizes the 0°
with respect to the 90° geometry (at 90° the π*’s on the two

Figure 2. Maps of the low-lying orbitals atθ ) 90° on the reported plane for the HOMO and the two N-basedπ* orbitals (πΝ* in the figure). The
value of the third coordinate is 0.6 Å.

Figure 3. As for Figure 2 forθ ) 0°.

[(NH3)5Ru-(4,4′-bipyridine)]2+ J. Phys. Chem. A, Vol. 103, No. 23, 19994441



rings do not mix and the electronic charge cannot be delocal-
ized). The inclusion of correlation effects by means of CI
calculations changes substantially the ground-state energy
dependence onθ. The variational results show that although
the position of the minimum is unchanged and the barrier atθ
) 0° only slightly decreases in comparison with SCF calcula-
tions, the barrier at 90° increases by about 2 kcal/mol. Such an
increase is about twice (∼4 kcal/mol) in CI-VP calculations,
where the depth of the minimum with respect to 0° decreases.
This emphasizes the importance of the correlation energy (Figure
4a), which, besides being much higher in CI-VP than in CI-V
calculations, shows a marked dependence onθ. This quantity
monotonically increases (in absolute value) going from a
perpendicular to a planar conformation of the two pyr rings. A
simple explanation may be found in the HOMO-LUMO energy
gap (see Figures 2 and 3), which grows withθ, and in the slight
increase of electronic charge on bpy at low values ofθ, due to
a more effective Ru-bpy back-bonding. It is worthwhile to note
that the CI-VP curve closely resembles the DFT one (within
0.7 kcal/mol), which includes also the correlation of the core
orbitals. This agreement is a clear indication that our choice of
the active orbitals and the correlation treatment in the CI-VP
calculation is well equilibrated as far as the dependence on the
torsional angle is concerned. For all these reasons we believe
that the CI-VP results are the best among all those presented
and their accuracy is sufficient to guarantee their use as
predictive results.

The inclusion of solvent effects by the PCM method, together
with our criterion for the choice of the cavity, gives the ground-
state curves of Figure 5 in the three solvents considered. In
solution, as in vacuo, the planar conformation is clearly the
favorite and the correlation energy is again responsible for the
high barrier at 90°. Its magnitude depends on the solvent donor
number (DN),31 but this dependence is not monotonic and the
barrier is first seen to decrease, going from NM to water, and
then to increase, going from water to DMSO, where it is the

largest (∼9 kcal/mol). We do not have a simple explanation
for this effect, which is clearly due to a different correlation
energy in the various solvents, since SCF results are nearly the
same in all three solvents.

Comparing the results of Figure 5 with those in vacuo of
Figure 4, one may note that all solvents cause an increase of
the barrier at 90°. Again, an explanation can be found in the
enhancement of the metal-to-ligand back-bonding interaction,
induced by the increased donor capabilities of the five ammonia
ligands (see also ref 9). This partially populates theπ* orbital,
thus increasing the electronic charge on both rings and enforcing
the C-C (ring-ring) bond by a netπ contribution. For instance,
the Mulliken gross charges on the second ring is found to be
+0.16,-0.02,-0.08, and-0.11 at 0° and+0.14, 0.00,-0.03,
and-0.04 at 90° in vacuo, NM, H2O, and DMSO, respectively.
In the same sequence the Ru-N(pyr) bond index is found to
be 0.54, 0.60, 0.65, and 0.68 at 0°, revealing that as DN
increases, back-bonding increases as well, and at 0° it also
affects theπ distribution on the second ring. Since the SCF
curves show a near-degeneration of the 0° and 90° conforma-
tions, it appears that this solvent effect tends to favor a planar
conformation only if the electronic correlation is properly taken
into account, as in CI-VP calculations.

A further remark can be made concerning the dependence of
the ground-state energy on the torsion. Since in the range 0-40°
the energy changes no more than 1 kcal/mol, the whole range
is expected to be statistically populated at room temperature
(kBT ≈ 0.6 kcal/mol), while the 90° conformation is strongly
disfavored. This prediction is confirmed by the quantum
statistical distribution function

whose behavior atT ) 273.15 K is reported in Figure 6 for all

Figure 4. Ground-state energy in vacuo as a function of the torsion
(θ) for the various kinds of calculation. Correlation energy as a function
of θ in CI-V (left scale) and CI-VP (right scale) calculations (upper
part).

Figure 5. Ground-state energy in solution as a function of the torsional
angle (θ) for the various calculations.

PQ(θ) )

∑
j

|øj0(θ)|2 e-Ej0/(kBT)

ZQ

(7)
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the three solvents and referenced to the CI-VP ground-state
energies of Figure 5.

In Figure 7 we show the energy curves of the first three
excited states in solution as a function of the torsion, shifted
by the corresponding ground-state energy atθ ) 0° (Va(θ) -
V0(0)), while in Figure 8 the corresponding excitation energies

are reported (Va(θ) - V0(θ)). The continuous line corresponds
to the strongest MLCT excitation in which one electron is
promoted from the Ru dxz (HOMO) to the lowest combination
of the pyrπ* (LUMO). The two further curves are excitations
from the two remaining near-degenerate t2g orbitals to the same
π* and have small oscillator strength.

The excitation energy for all transitions decreases monotoni-
cally with DN; the solvent enforces the electron donor capability
of the ammonia, causing an energy rise of the metal outer d
orbitals.9 Furthermore, the energy gap between the dxz f π*
and the two near-degenerate dyz f π* and dx2-y2 f π* curves
grows with DN as a result of the corresponding increase of the
dxz-π* interaction.9

As already noted and explained in refs 9 and 14, although
theπ-dxz interaction causes the dxz be the HOMO, at the same
time the dxz f π* excitation energy is found to be greater than
that from the two other d orbitals. This is due to the exchange
integral [d,π* |d,π*], which is small for the dyz and dx2-y2 orbitals
and significant for the dxz.

The barrier at 90° is much higher in the excited states than
in the ground, and this can be easily understood in terms of the
LUMO population that has a bonding character between the
two rings.

Finally, in Figure 9 we show the absorption cross section
(eqs 4 and 5) for the system under study in the three solvents.
The discrete absorption lines are convoluted with a Gaussian
function of fwhm ) 0.1 eV (see previous section). The band
maximum, which is found at 2.26, 2.42, and 2.88 eV in DMSO,
H2O, and NM, respectively, in reverse order with respect to
DN (see also ref 9), is close to the vertical excitation energy at
θ ) 0° (see Figure 9). This is in accordance with the favorable
conformation for low values of the torsion in both ground and
excited electronic states. In the same Figure 9 we also report
the statistically weighted oscillator strengths (eq 5) between the

Figure 6. Ground-state population distribution (PQ) as a function of
θ in the three solvents (left scale, full line). The shifted energies of
Figure 5 are also reported for a better understanding (right scale, dashed
line).

Figure 7. Energy curves of the lowest singlet excited states as a
function of the torsion in the three solvents: continuous line is the dxz

f π*, dashed line is the dx2-y2 f π*, and dashed-dotted line is the
dyz f π*. The curves are shifted with respect to the ground-state energy
at θ ) 0° (V0(0)).

Figure 8. Excitation energies (Va(θ) - V0(θ)) as a function of the
torsion in the three solvents (left scale): continuous line is the dxz f
π*, dashed line is the dx2-y2 f π*, and dashed-dotted line is the dyz

f π*. Electronic transition moment (dotted line, right scale) for the
dxz f π* transition is also reported.
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discrete levels of the torsional states for H2O (in NM and DMSO
similar features are presents). While the more intense peak
corresponds to the 0-0 transition, vibronic lines are spread over
a range of about 10kBT (kBT ≈ 0.025 eV).

As far as the line shape profile is concerned, the results of
Figure 9, which only include the torsion among the many nuclear
degrees of freedom that could be of relevance, we can conclude
that as the solvent DN increases, the line shape becomes more
symmetric (e.g., compare the band for NM with that for DMSO).
However, the width of the band is not monotonic with DN (the
largest is in water). Both these results can be interpreted in terms
of the dependence of the ground-state energy on the torsion. In
fact, asθ increases, the rise of the ground-state energy follows
the order DMSO, NM, and H2O, giving rise to a statistical
population distribution onθ (see Figure 6) whose width grows
in the same order. The oscillation of V0(θ) for small values of
the torsion is at the origin of the observed line shape profile.
For NM this oscillation is almost absent and the profile is then
close to the progression of Franck-Condon factors for undis-
placed oscillators, while for water and DMSO the oscillation
causes the profile to become similar to that of displaced
oscillators.

A final remark can be made regarding the comparison with
experimental results. While for pyrazine9 the wide availability
of experimental data16 made possible a good comparison
between computed excitation energies and measured absorption
spectra in various solvents, for the present case there is only
one result reported in water by Creutz et al.17 The authors find
an MLCT band with the maximum at 2.58 eV, a value that is
in good agreement with the results of our computations.

Conclusions

We have reported a study of the absorption spectrum of the
complex [Ru(NH3)5-(4,4′-bpy)]2+ in the visible, carried out by
extensive CI calculations in which the solvent is introduced by
the PCM model. This method, widely applied to the study of
several physicochemical problems in solution, can be success-
fully applied to the study of absorption processes. When the
formation of hydrogen bonds is the main source of solute-
solvent interactions and the orbitals involved in the excitation
are far enough from the solute-solvent interface, as in the case

studied here, a suitable choice of the cavity guarantees a proper
inclusion of solvent effects.

The dependence on the torsional angleθ of the ground and
the lowest excited states has been studied in vacuum and in
three solvents (nitromethane, water, and dimethylsulfoxide).
Furthermore, the MLCT band profile has been computed
including the torsional degrees of freedom.

The solvent effect found in the MLCT excitation of [Ru-
(NH3)5-(4,4′-bpy)]2+ has the same trend found experimentally
for all Ru(II) complexes with N-aromatic ligands and, in
particular, in the pyz compound.16 As the solvent DN increases,
the MLCT transition is red-shifted as a consequence of the
increased electron density on Ru that lowers the HOMO-
LUMO energy gap.9 Note that DN and the dielectric constant
are not linearly dependent.

Our results are in agreement with the only experimental result
available, that in water by Creutz et al.17

The next step will now be that of attacking the dimer
compound [Ru(NH3)5-(4,4′-bpy)-Ru(NH3)5]m+ (m) 4, 5, and
6), with the aim of getting a definitive answer on the nature of
the observed near-IR-visible bands at various total chargesm.
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